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Abstract

We study the Price of Anarchy of simultaneous first-price auctions for buyers with sub-
modular and subadditive valuations. The current best upper bounds for the Bayesian Price of
Anarchy of these auctions are e/(e —1) [34] and 2 [16], respectively. We provide matching lower
bounds for both cases even for the case of full information and for mixed Nash equilibria via an
explicit construction.

We present an alternative proof of the upper bound of ¢/(e — 1) for first-price auctions with
fractionally subadditive valuations which reveals the worst-case price distribution, that is used
as a building block for the matching lower bound construction.

We generalize our results to a general class of item bidding auctions that we call bid-
dependent auctions (including first-price auctions and all-pay auctions) where the winner is
always the highest bidder and each bidder’s payment depends only on his own bid.

Finally, we apply our techniques to discriminatory price multi-unit auctions. We complement
the results of [12] for the case of subadditive valuations, by providing a matching lower bound of
2. For the case of submodular valuations, we provide a lower bound of 1.109. For the same class
of valuations, we were able to reproduce the upper bound of e/(e — 1) using our non-smooth
approach.

1 Introduction

Combinatorial auctions constitute a fundamental, well-studied resource allocation problem that
involves the interaction of n selfish agents in competition for m indivisible resources/goods. The
preferences of each player for different bundles of the items are expressed via a valuation set function
(one per player). The main challenge is to design a (truthful) mechanism that allocates the items
in an efficient way in the equilibrium, i.e., so that it maximizes the social welfare, which is the sum
of the valuations of the players for the received bundles. Although it is well-known that this can be
achieved optimally by the VCG mechanism [36, 11, 18], unfortunately this might take exponential
time in m and n [28, 29] (unless P=NP).

In practice, several simple non-truthful mechanisms are used. The most notable examples
are generalized second price (GSP) auctions used by AdWords [13, 35], simultaneous ascending
price auctions for wireless spectrum allocation [27], or independent second price auctions on eBay.
Furthermore, in these auctions the expressive power of the buyers is heavily restricted by the bidding
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language, so that they are not able to represent their complex preferences precisely. In light of the
above, Christodoulou, Kovécs and Schapira [9] proposed the study of simple, non-truthful auctions
using the price of anarchy (PoA) [21] as a measure of inefficiency of such auctions.!

Item bidding Of particular interest are the so-called combinatorial auctions with item-bidding,
from both practical and theoretical aspects. In such an auction, the auctioneer sells each item
by running simultaneously m independent single-item auctions. Depending on the type of single-
item auctions used, the two main variants that have been studied are simultaneous second-price
auctions (SPAs) [9, 2, 16] and simultaneous first-price auctions (FPAs) [20, 34, 16]. In both cases,
the bidders are asked to submit a bid for each item. Then each item is assigned to the highest
bidder. The main difference is that in the former a winner is charged an amount equal to the second
highest bid while in the latter a winner pays his own bid.

FPAs have been shown to be more efficient than SPAs. For general valuations, Hassidim et
al. [20] showed that pure equilibria of FPAs are efficient whenever they exist, but mixed, and
Bayesian Nash equilibria of FPAs can be highly inefficient in settings with complementarities. For
two important classes of valuation functions, namely fractionally subadditive and subadditive®, for
mixed and Bayesian Nash equilibria, [20, 34] and [16] showed that FPAs have lower (constant)
price of anarchy than the respective bounds obtained for SPAs [9, 2, 16]. The current best upper
bounds for the price of anarchy in FPA are e/(e — 1) for XOS valuations [34], and 2 for subadditive
valuations [16] (proven by different techniques).

Our Contribution Following the work of [20, 16, 34], we study the price of anarchy of FPAs for
games with complete and incomplete information. Our main concern is the development of tools
that provide tight bounds for the price of anarchy of these auctions. Our results complement the
current knowledge about simultaneous first-price auctions. We provide matching lower bounds to
the upper bounds by Syrgkanis and Tardos [34] and by Feldman et al. [16], showing that even for
the case of full information and mixed Nash equilibria the PoA is at least e/(e —1) for submodular®
valuations (and therefore for XOS) and 2 for subadditive valuations®.

We present an alternative proof of the upper bound of e/(e — 1) for FPAs with fractionally
subadditive valuations. This bound was shown before in [34] using a general smoothness framework.
Our approach does not adhere to their framework. A nice thing with our approach, is that it reveals
the worst-case price distribution, that we then use as a building block for the matching lower bound
construction. An immediate consequence of our results is that the price of anarchy of these auctions
stays the same, for mixed, correlated, coarse-correlated, and Bayesian Nash equilibria. Only for
pure Nash equilibria it is equal to 1. Our findings suggest that smoothness may provide tight results
for certain classes of auctions, using as a base class the class of mixed Nash equilibria, and not that
of pure equilibria. This is in contrast to what is known for routing games, where the respective
base class was the class of pure equilibria.

'In this setting, the price of anarchy is defined as the worst-case ratio of the optimal social welfare over the social
welfare obtained in a (Bayesian) Nash equilibrium.

2Fractionally subadditive valuations are also known as XOS valuations. For definitions of these valuation functions
we refer the reader to Section 2.

3In fact our lower bound holds even for the class of OXS valuations that is a strict subclass of submodular
valuations. We refer the reader to Section 2 for a definition of OXS valuations and for their relation to other
valuation classes.

4 Independently, and after a preliminary version of our work [10], Roughgarden [33] showed a general method to
provide lower bounds for the Price of Anarchy of auctions. We discuss it and compare it to our work in the Related
Work paragraph.



For buyers with additive valuations (or for the single item auction), we show that any mixed
Nash equilibrium is efficient in contrast to Bayesian Nash equilibria that were previously known
not to be always efficient [22]. This suggests an interesting separation between the full and the
incomplete information cases as opposed to other valuation functions (for example submodular and
subadditive) and other auction formats such as all-pay auctions due to Baye et al. [1].

Then we generalize our results to a class of item bidding auctions that we call bid-dependent
auctions. Intuitively, a single item auction is bid-dependent if the winner is always the highest
bidder, and a bidder’s payment depends only on his own bid. Note that both winner and losers
may have to pay. Apart from the FPA (where the losers pay 0), another notable item-bidding
auction that falls into this class is the simultaneous all-pay (first-price) auction (APA) [34], where
all bidders (even the losers) are charged their bids. For subadditive valuations, we show that the
PoA of simultaneous bid-dependent auctions is exactly 2, by showing tight upper and lower bounds.
We show that the upper bound technique due to Feldman et al. [16] for FPAs, can be applied to
all mechanisms of this class. Interestingly, although one might expect that FPAs perform strictly
better than APAs, our results suggest that all simultaneous bid-dependent auctions perform equally
well. We note that our upper bound for subadditive valuations extends the previously known upper
bound of 2 for APAs that was only known for XOS valuations [34] .

Finally, we apply our techniques on discriminatory price multi-unit auctions [22]. We com-
plement the results by de Keijzer et al. [12] for the case of subadditive valuations, by providing a
matching lower bound of 2, for the standard bidding format. For the case of submodular valuations,
we were able to provide a lower bound of 1.109. We were also able to reproduce their upper bound
of e/(e — 1) for submodular bids, using our non-smooth approach. Note that the previous lower
bound for such auctions was 1.0004 [12] for Bayesian Nash equilibria. Both of our lower bounds
hold for the case of mixed Nash equilibria.

Related Work A long line of research aims to design simple auctions with good performance
guarantee (see e.g. [19, 8]). The (in)efficiency of first-price price auctions has been observed in
economics (cf. [22]) starting from the seminal work by Vickrey [36]. Bikhchandani [4] was the
first who studied the simultaneous sealed bid auctions in full information settings and observed the
inefficiency of their equilibria.

Christodoulou, Kovécs and Schapira [9] extended the concept of PoA to the Bayesian setting
and applied it to item-bidding auctions. Bikhchandani [4] and then Hassidim et al. [20] showed
that in case of general valuations, in FPAs pure Nash equilibria are always efficient (whenever they
exist), whereas for SPAs Fu, Kleinberg and Lavi [17] proved that the PoA is at most 2. For Bayesian
Nash equilibria, Syrgkanis and Tardos [34] and Feldman et al. [16] showed improved upper bounds
on the Bayesian price of anarchy (BPoA) for FPAs. Syrgkanis and Tardos came up with a general
composability framework of smooth mechanisms, that proved to be quite useful, as it led to upper
bounds for several settings, such as first price auctions, all-pay auctions and multi-unit auctions.

Only a few lower-bound results are known for the PoA of simultaneous auctions. For valuations
that include complementarities, Hassidim et al. [20] presented an example with PoA = Q(y/m)
for FPA; as suggested in [16], similar lower bound can be derived for SPAs, as well. Under the
non-overbidding assumption, Bhawalkar and Roughgarden [2] gave a lower bound of 2.013 for SPAs
with subadditive bidders and Q(n!/4) for correlated bidders. In [16], similar results are shown under
the weak non-overbidding assumption. We summarize the PoA results for FPAs in table 1.

Very recently and independently, Roughgarden [33] presented a very elegant methodology to
provide PoA lower bounds via a reduction from communication or computational complexity lower
bounds for the underlying optimization problem. One consequence of his reduction is a general



Table 1: Summary of the bounds on the PoA of FPAs.

’ Valuations | Lower Bound | Upper Bound ‘

General, Pure 1 1 [4]

20
General, M-B vm [20] m [20]
SA, M-B 2 [This paper] 2 [16]
XOS, M-B e/(e—1) [This paper] | e/(e —1) [34]
SM, M-B e/(e—1) [This paper] | e/(e —1) [34]
OXS, M-B e/(e —1) [This paper] | e/(e—1) [34]

In the first column, the first argument refers to the valuation class and the second argument to
the related equilibrium concept. SA and SM stand for subadditive and submodular valuations,
respectively, and where ‘M-B’ appears the bounds hold for mixed, correlated, coarse correlated or
Bayesian Nash equilibria.

lower bound of 2 and e/(e — 1) for the PoA of any simple auction (including item-bidding auctions)
with subadditive and fractionally subadditive bidders, respectively. Therefore, there is an overlap
with our results for these two classes of valuations. We show these lower bounds via an explicit
construction for FPAs (and also for bid-dependent auctions).

We emphasize that these two approaches are incomparable in the following sense. On the
one hand, the results in [33] hold for more general formats of combinatorial auctions than the
ones we study here. On the other hand, our e/(e — 1) lower bound holds even for more special
valuation functions where [33]’s results are either weaker (2e/(2e — 1) for submodular valuations)
or not applicable. For the case of submodular valuations, Feige and Vondrak [15] showed that a
strictly higher than 1 — 1/e amount of the optimum social welfare can be obtained in polynomial
communication and for gross substitute valuations (and therefore for its subclass, OXS valuations),
Nisan and Segal [30] showed that exact efficiency can be obtained in polynomial communication.
These two results show that [33]’s technique does not provide tight lower bounds for the settings
studied in this paper. We also note that the PoA lower bound obtained by [33]’s reduction can
only be applied to approximate Nash equilibria while our results apply to exact Nash equilibria.
Further, our PoA lower bound proof for subadditive valuations uses a simpler construction than
the proof in [33] and it holds even for the case of only 2 bidders and identical items (multi-unit
auction). Finally, it should be stressed that none of our lower bounds for multi-unit auctions can
be derived from [33].

Markakis and Telelis [26] studied uniform price multi-unit auctions. De Keijzer et al. [12]
bounded the BPoA for several formats of multi-unit auctions with first or second price rules.
Auctions employing greedy algorithms were studied by Lucier and Borodin [24]. A number of
works [31, 6, 32] studied the PoA of generalized SPAs in the full information and Bayesian settings
and even with correlated bidders [25]. Chawla and Hartline [7] proved that for the generalized
FPAs with symmetric bidders, the pure Bayesian Nash equilibria are unique and always efficient.

Organization of the paper We introduce the necessary background and notation in Section
2. Then, we present the tight bounds for FPAs with fractionally subadditive, subadditive and
additive valuations in Sections 3, 4 and 5, respectively. In Section 6, we show how our results can
be generalized to a class of auctions that we call bid-dependent. Finally, we apply our techniques
to get bounds on the PoA of discriminatory multi-unit auctions in Section 7.



2 Preliminaries

Simultaneous first-price auctions constitute a simple type of combinatorial auctions. In a combina-
torial auction with n players (or bidders) and m items, every player i € [n] has a valuation for each
subset of items, given by a valuation function v; : 2™ — R>q, where v; € V; for some possible set
of valuations V;. A valuation profile for all players is v = (v1,vg,...,v,) € x;V;. The v; functions
are monotone and normalized, that is, S C T = v;(S) < v;(T), and v;(#) = 0. We use the short
notation v;(j) = v;({j}).

In the Bayesian setting, the valuation of each player ¢ is drawn from V; according to some
known distribution D;. We assume that the D; are independent (and possibly different) over the
players. In the full information setting the valuation v; is fixed and known by all other players for
all 7 € [n]. Note that the latter is a special Bayesian combinatorial auction, in which player i has
valuation v; with probability 1.

An allocation X = (Xy,...,X,) is a partition of the items (allowing empty sets X;), so that
each item is assigned to exactly one player. The most common global objective in combinatorial
auctions is to maximize the sum of the valuations of the players for their received sets of items, i.e.,
to maximize the social welfare SW(X) of the allocation, where SW/(X) = 3,y vi(X;). Therefore,
for an optimal allocation O(v) = O = (Oy,...,0,) the value SW(O) is maximum among all
possible allocations.

In a simultaneous (or item bidding) auction every player ¢ € [n] submits a non-negative bid b;;
for each item j € [m]. The items are then allocated by independent auctions: for each j € [m], the
bidder ¢ with the highest bid b;; receives the item. We consider the case when the payment for
each item is the first price payment: a player pays his own bid (the highest bid) for every item he
receives. Our (upper bound) results hold for arbitrary randomized tie-breaking rules. Note that
with such a rule, for any fixed b = (b, ..., b,), the probabilities for the players to get a particular
item are fixed.

For a given bid vector b;, item j € [m] and a subset of items S C [m] we use the notation
bi(S) = > es bij, and bi(j) = b;;. Assume that the players submitted bids for the items according to
bi = (bi1,- .., bim) and the simultaneous first-price auction yields the allocation X (b). For simplicity,
we use v;(b) and SW(b) instead of v;(X;(b)) and SW(X(b)), to express the valuation of player 4
and the social welfare for the allocation X (b) if X is clear from the context. The wutility u; of player
i is defined as his valuation for the received set, minus his payments: u;(b) = v;(X;(b)) —b;(X;(b)).

2.1 Bidding strategies, Nash equilibria, and the price of anarchy

A pure (bidding) strategy b; for player i is a vector of bids for the m items b; = (b;1,...,bim). As
usual, b_; denotes the strategies of all players except for i. The pure strategy profile of all bidders
is then b = (b1,bo,...,by).

A mized strategy B; of player ¢ is a probability distribution over pure strategies. Let B =
(B1,...,By) be a profile of mixed strategies. Given a profile B, we fix the notation for the following
cumulative distribution functions (CDF): unless defined otherwise, G;; is the CDF of the bid of
player 4 for item j; Fj is the CDF of the highest bid for item j in b, and Fj; is the CDF of the
highest bid for item j in b_;. Observe that F; = II;Gy;, and Fj; = II;4£;G;. We also use ¢;;(x)
to denote the probability that player i gets item j by bidding z. Then ¢;;(z) < Fjj(x) due to a
possible tie in x.

We review five standard equilibrium concepts studied in this paper: pure, mixed, correlated,
coarse correlated and Bayesian Nash equilibria. The first four of them are for the full information
setting and the last one is defined in the Bayesian setting. Let v = (v1,...,v,) be the players valu-



ation functions. In the Bayesian setting, v; is drawn from V; according to some known distribution.
Let B denote a distribution over bidding profiles b of the players. Then, B is called a

— pure Nash equilibrium, if B is a pure strategy profile b and u;(b) > u; (b}, b_;).

— mized Nash equilibrium, if B = x;B; and Epg[u;(b)] > Ep_,p_,[ui(b;, b_;)].

— correlated Nash equilibrium, if Ep. g[ui(b)|b;] > Epplu;i (b, b_;)|b;].

— coarse correlated Nash equilibrium, if Epg[u;(b)] > Epo[ui(b;, b_;)].

— Bayesian Nash equilibrium, if B;(v) = x;Bi(v;) and Ey_, popwv)[ui(b)] > Ey_, 1 ,~B_,(v_,)[wi(bj, b—s)].
where the given inequalities hold for all players i and (pure) deviating bids 4. It is well known
that each one of the first four classes is contained in the next class, i.e., pure C mixed C correlated

C coarse correlated. If we regard the full information setting as a special case of the Bayesian
setting, we also have pure C mixed C Bayesian.

For a given auction and fixed valuations v of the bidders, let O be an optimal allocation. Then
for this auction (game) the price of anarchy in pure equilibria is POA = maxp pure Nash %; Given
a class of auctions, the price of anarchy (PoA) for this type of auction is the worst case of the above
ratio, over all auctions of the class, valuation profiles v and bidding profile B. For the other four
types of equilibria, the price of anarchy can be defined analogously.

For the expected utility of a given bidder ¢ we often use the short notation E[u;] (if B is
clear from the context) or u;(B) to denote Epg[ui(b)]. Similarly, for fixed b}, we use Efu;(b})] =
Ep_,~B_,[ui(b;,b_;)]. We also use E, instead of Ey.p .

2.2 Types of valuations

Our results concern different classes of valuation functions, which we define next, in increasing
order of inclusion. Let v : 2™ — R>0, be a valuation function. Then v is called

— additive, if v(S) =} v());

— multi-unit-demand or OXS, if for some k there exist k unit demand valuations v", r € [k] (defined
as v"(S) = max;esv"(j)), such that v(S) = maxg_ | > orelk] V" (S,);°

— submodular, if v(SUT) +v(SNT) <v(S)+v(T);

— fractionally subadditive or XOS, if v is determined by a finite set of additive valuations f, for
v €T, so that v(S) = max,er fy(5);

— subadditive, if v(SUT) < v(S)+ v(T);

where the given equalities and inequalities must hold for arbitrary item sets S,7 C [m]. It is well-
known that each one of the above classes is strictly contained in the next class, e.g., an additive set
function is always submodular but not vice versa, a submodular is always XOS, etc. [14]. As an

equivalent definition, submodular valuations are exactly the valuations with decreasing marginal
values, meaning that v({j}UT) —v(T) < v({j}US) —v(S) holds for any item j, given that S C T.

e[k Sr

3 Submodular valuations

In this section we present a lower bound of %5 for the mixed PoA in simultaneous first price
auctions with OXS and therefore, submodular and fractionally subadditive valuations. This is a
matching lower bound to the results by Syrgkanis and Tardos [34].

In order to the explain the key properties of the instance proving a tight lower bound, first we
discuss a new approach to obtain the same upper bound for the PoA of a first price single item
auction as in [34]. While the upper bound that we derive with the help of this idea, can also be

®|J stands for disjoint union



obtained based on the very general smoothness framework [32, 34, 12], the approach we introduce
here does not adhere to this framework.® The strength of our approach consists in its potential to
lead to better (in this case tight) lower bounds, as we demonstrate subsequently.

3.1 PoA Upper Bound for Single Item Auctions
Theorem 3.1. The PoA of mized Nash equilibria in first-price single-item auctions is at most _%5.

Proof. Let v = (v1,...,v,) be the valuations of the players, and suppose that v; = MaXpe(n] Vk-
We fix a mixed Nash equilibrium B = (By, Bs, ..., By). Let p; denote the highest bid in b_;, and
F(z) = Fi(z) be the cumulative distribution function (CDF) of p;, that is, F'(z) = Py_,~B_,[pi < ].
The following lemma prepares the ground for the selection of an appropriate deviating bid.

Lemma 3.2. For any pure strategy a of player i, Epg[u;(b)] > F(a)(v; — a).

Proof. If F is continuous in a, then F(a) = Plp; < a] = P[p; < a], tie-breaking in a does not
matter, and F'(a) equals also the probability that bidder i gets the item if he bids a. Therefore,
F(a)(vi —a) = Ep_,~B_,[ui(a,b_;)] < Ep.plui(b)], since B is a Nash equilibrium. If F' is not
continuous in a (P[p; = a] > 0), then, as a CDF, it is at least right-continuous. By the previous
argument E[u;(b)] > F(a+ €)(v; — a — €) holds for every x = a + € where F' is continuous, and the
lemma follows by taking € — 0. O

Since in a Nash equilibrium the expected utility of every (other) player is non-negative, by
summing over all players, it holds that >}, E[ug(b)] > F(a)(v; — a).

On the other hand, for any fixed bidding profile b we have ug(b) = v (Xx(b)) — bi(Xk(b)),
where b (Xk(b)) = b, whenever by, is a winning bid, and by (X% (b)) = 0 otherwise. Let bpyax be the
maximum bid in b. By taking expectations with regard to b ~ B, and summing over the players,
E[Y we(b)] = E[Y, (vk(Xk(B) — be(Xi(6)))] = E[S; vk(Xi(b)) — buax] = EISW (b)] — Elbrnas].
By combining this with Lemma 3.2, we obtain

E[SW(b)] =E > F(a)(vi — a) + E[bmax| > F(a)(vi — a) + E[pi], (1)

ka(Xk(b))
k=1

for any (deviating) bid a. (Analogues of this derivation are standard in the simultaneous auc-
tions literature.) We choose the bid a* that mazimizes the right hand side of (1), i.e. a* =
argmax, F'(a)(v—a) (see Figure 1 (a) for an illustration). Then, in order to upper bound the PoA,
we look for the maximum value of A, such that,

F(a™)(v; —a") + Elp;] > v;. (2)

The following lemma settles the maximum value of such A as 1 — % for mixed equilibria.” This
will complete the proof of the theorem, since by (1) and SW(O) = v; we obtain E[SW (b)] >
(1- %) - SW(0).

Lemma 3.3. For any non-negative random variable p with CDF F, and any fived value v, it is
true that

e

F(a*)(v—a*) + E[p] > (1 _ 1) v,

SRoughly, because the pure deviating bid a that we identify, depends on the other players’ bids b_; in the Nash
equilibrium.

"If B is a pure equilibrium, then it is easy to verify that F is a step function, furthermore a* = p;, and inequality (2)
boils down to 1« (v; —a*) +a* =1-v;
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Figure 1: Figure (a) is a schematic illustration of the expression F(a*)(v — a*) + E[p], where
A = F(a*)(v—a*). Figure (b) shows the CDF F(z),which makes all the inequalities of Lemma 3.3
tight, i.e. for every z € [0, (1 — 1) ], F(z)(v —z) = A= 2.

€ €

Proof. Set A= F(a*)(v—a*), for a* = argmax, F'(a)(v —a). We use the fact that the expectation
of a non-negative random variable with CDF F can be calculated as E[z] = [;°(1— F(x))dz. Thus,

v—A v—A
F(a*)(v—a*)+E[p] > A—I—/O (1—F(z))de =A+ (v—A) —/0 F(z)dx

v—A
> v—/ 4 d:c:v+Aln<A>
0 v—2x v

v—i—vln(l) = (1—1)1),
e e e

where the last inequality is due to the fact that Aln(%) is minimized for A = 7.

Vv

Worst-case price distribution The CDF F(x) that makes all the inequalities of (the proof of)
Lemma 3.3 tight (see Figure 1(b)), is

F(m):{e(vvx) ,forxg(l—%)v
1 Jforaz>(1-1)v

Observe that for z < (1 — 1), F(x)(v—z) = Y and for z > (1— 1), Fla)v—z)=v—1a<
v—(1—1)v =2 So, the bid that maximizes the quantity F(a)(v—a) is any value a € [0, (1—1)].
The given distribution F' for p; makes inequality (2) tight. In order to construct a (tight) lower
bound for the PoA, we also need to tighten the inequalities in (1). Note that the inequality of
Lemma 3.2 is tight for all a € [0, (1 - %) v]. Intuitively, we need to construct a Nash equilibrium,
where the CDF of p; is equal to F (z) and b; doesn’t exceed p;. We present a construction (with
many items) in Section 3.2.

Remark 1. Here we discuss our technique and the smoothness technique that achieves the same
upper bound [34]. In [34], a particular mixed bidding strategy Ay was defined for each player ¢,
such that for every price p = max;; bir, Eay[ui(Ao,p)] +p > v(1 —1/e). If we denote g(A, F) =
E 4 rlui(a, p) + p], it can be deduced that max4 min, g(A,p) > v(1 —1/e). In Lemma 3.3 we show



that minp max, g(a, F') > v(1 — 1/e). Moreover, we prove that the inequality is tight by providing
the minimizing distribution F, such that max, g(a, F') = v(1 — 1/e). By the Minimax Theorem,
ming max, g(a, F') = max, min, g(A, p) = v(1—1/e). One advantage of our approach is that it can
be coupled with a worst-case distribution F that serves as an optimality certificate of the method.
Moreover, if one can convert F to Nash Equilibrium strategy profile (see Section 3.2), a tight Nash
equilibrium construction is obtained; this can be a challenging task, though.

3.2 Tight Lower Bound

Here we present a tight lower bound of _4; for the mixed PoA in simultaneous first price auctions
with OXS valuations. This implies a lower bound for submodular and fractionally subadditive
valuations.

Theorem 3.4. The price of anarchy of simultaneous first price auctions with full information and
OXS valuations is at least -5 ~ 1.58.

Proof. We construct an instance with n + 1 players and n™ items. We define the set of items as
M = [n]™, that is, they correspond to all the different vectors w = (w1, wa, ..., wy,) with w; € [n]
(where [n] denotes the set of integers {1,...,n}). Intuitively, they can be thought of as the nodes
of an n dimensional grid, with coordinates in [n] in each dimension.

We call player 0 the dummy player, and all other players i € [n] real players. We associate each
real player ¢ with one of the dimensions (directions) of the grid. In particular, for any fixed player i,
his valuation for a subset of items S C M is the size (number of elements) in the n — 1-dimensional
projection of S in direction i. Formally,

v;(S) = {w—; | Fw; s.t. (w;,w_;) € S}.

It is straightforward to check that v; has decreasing marginal values, and is therefore submodular®.
The dummy player 0 has valuation 0 for any subset of items.

Given these valuations, we describe a mixed Nash equilibrium B = (B, ..., B,) having a PoA
arbitrarily close to e/(e — 1), for large enough n. The dummy player bids 0 for every item, and
receives the item if all of the real players bid 0 for it. The utility and welfare of the dummy player
is always 0. For real players the mixed strategy B; is the following. Every player i picks a number
¢ € [n] uniformly at random, and an z according to the distribution with CDF

G(x) = (n—1) (11—1>,
(1 —2x)n-T

where = € [0, 1-— ("—_l)nfl}. Subsequently, he bids = for every item w = (¢, w_;), with w; = ¢ as

n
it" coordinate, and bids 0 for the rest of the items, see Figure 2 for the cases of n = 2 and n = 3.

That is, in any b; in the support of B;, the player bids a positive x only for an n — 1 dimensional
slice of the items. Observe that G(-) has no mass points, so tie-breaking matters only in case of 0
bids for an item, in which case player 0 gets the item.

Let F(z) denote the probability that bidder i gets a fixed item j, given that he bids b;(j) = =
for this item, and the bids in b_; are drawn from B_; (due to symmetry, this probability is the
same for all items w = (¢, w_;)). For every other player k, the probability that he bids 0 for item j

8These valuations are also OXS. In the definition of OXS valuations (Section 2), we set k = n™ ! and for the
unit-demand valuations corresponding to player 4 the following holds: if item j corresponds to w = (w1, wa, ..., wy)
then for r € [k], v] (j) = 1, if w_; is the n-ary representation of r and vj (j) = 0, otherwise.
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Figure 2: The figure illustrates the cases n = 2 and n = 3 ((a) and (b) respectively) for the lower
bound example with submodular valuation functions. In (¢) an optimal allocation for the case
n = 3 is shown.

is (n — 1)/n, and the probability that j is in his selected slice but he bids lower than z is G(z)/n.
Multiplying over the n — 1 other players, we obtain

G(z) n-— 1) o=

n n 1—z

F(z) = (

Notice that v; is an additive valuation restricted to the slice of items that player ¢ bids for in a
particular b;. Therefore, when player i bids x in b;, his expected utility is F'(z)(1—z) for one of these
items, and comprising all items it is E[u;(b;)] = n" 'F(z) - (1 —2) = n"! (”T_l)n_l =(n—-1)""1L

Next we show that B is a Nash equilibrium. In particular, the bids b; in the support of B;
maximize the expected utility of a fixed player .

First, we fix an arbitrary w_;, and focus on the set of items C := {(¢,w_;) | £ € [n]}, which we
call a column for player ¢. Recall that ¢ is interested in getting only one item within C, while his
valuation is additive over items from different columns. Moreover, in a fixed b_;, every other player
k submits the same bid for all items in C, because either the whole C' is in the current slice of k,
and he bids the same value x, or no item from the column is in the slice and he bids 0. Consider
first a deviating bid, in which 4 bids a positive value for more than one items in C, say (at least)
the values x > 2’ > 0 where x is his highest bid in C. Then his expected utility for this column is
strictly less than F'(z)(1 — z), because his value is F'(x) - 1, but he might have to pay x + 2/, in case
he gets both items. Consequently, bidding = for only one item in C' and 0 for the rest of C' is more
profitable.

n—1

Second, observe that restricted to a fixed column, submitting any bid z € [0, 1-— (”T_l) } for

one arbitrary item results in the constant expected utility of (”T_l)n_l, whereas a bid higher than
n—1

1-— ("Tfl)nfl guarantees the item but pays more so the utility becomes strictly less than (an)

for this column. In summary, bidding for exactly one item from each column, an arbitrary (possibly
different) bid z € [0, 1-— (”T_l)nfl} is a best response for ¢ yielding the above expected utility, which

concludes the proof that B is a Nash equilibrium.

It remains to calculate the expected social welfare of B, and the optimal social welfare. We
define a random variable w.r.t. the distribution B. Let Z; = 1 if one of the real players 1,...,n gets
item j, and Z; = 0 if player 0 gets the item. Note that the social welfare is the random variable

10



> jem Zj, and the expected social welfare is

n
b@B[SW(b)] = Z E[Z;] -1 =n"(1 — Pr(no real player bids for j)) = n" <1 - (n ; 1) ) .
J

Finally, we show that the optimum social welfare is n'. An optimal allocation can be constructed
as follows: For each item (w1, ws, ..., w,) compute r = (3°7" ; w; mod n). Allocate this item to the
player 7+ 1. It is easy to see that this way the n items of any particular column {(¢,w_g) | ¢ € [n]}
(in any direction k) are given to the n different players, and that each player is allocated n”~! items
(Figure 2(c) shows the optimum allocation for n = 3). In other words, any two items allocated to
the same player differ in at least two coordinates. In particular, they belong to different columns of
this player, and all contribute 1 to the valuation of the player, which is therefore n”~!. Since this
valuation is maximum possible for every player, the obtained social welfare of n™ is optimal.

Thus, the Price of Anarchy is W;)n), and for large n it converges to ﬁ ~ 1.58. O

4 Subadditive valuations

Here we show a lower bound of 2 on the mixed PoA when players have subadditive valuations. This
lower bound matches the upper bound by Feldman et al. [16].

Theorem 4.1. The mized PoA of simultaneous first price auctions with subadditive bidder valua-
tions s at least 2.

Proof. Consider two players and m items with the following valuations: player 1 is a unit-demand
player with valuation v < 1 (to be determined later) if she gets at least one item; player 2 has
valuation 1 for getting at least one but less than m items, and 2 if she gets all the items. Inspired
by [20], we use the following distribution functions:

m—1)x

G(z) = (

DT e oy Py = L

y € 10,1/m].

Player 1 picks one of the m items uniformly at random, and bids x for this item and 0 for all other
items. Player 2 bids y for each of the m items. The bids z and y are drawn from distributions with
CDF F(x) and G(y), respectively. In the case of a tie, the item is always allocated to player 2.

Let B denote this mixed bidding profile. We are going to prove that B is a mixed Nash
equilibrium for every v > 1/m.

If player 1 bids any x in the range (0, 1/m] for the one item, she gets the item with probability
F(z), since a tie appears with zero probability. Her expected utility for z € (0,1/m] is F(z)(v—z) =
v — 1/m. Thus if player 1 picks & randomly according to G(x), her utility is v — 1/m (note that
according to G(z) she bids 0 with zero probability). Bidding something greater than 1/m results
in a utility less than v — 1/m. Regarding player 1, it remains to show that her utility while bidding
for only one item is at least her utility while bidding for more items. Suppose player 1 bids xz; for
item ¢, 1 <7 <m. W.lo.g., assume x; > x;41, for 1 <i¢ < m — 1. Player 1 doesn’t get any item if
and only if y > x1. So, with probability F'(z1), she gets at least one item and she pays at least x;.
Therefore, her expected utility is at most F'(z1)(v —x1) = v — 1/m, (but it would be strictly less
if she is charged nonzero payments for other items). This means that bidding only x; for one item
and zero for the rest of them dominates the strategy we have assumed.

If player 2 bids a common bid y for all items, where y € [0,1/m], she gets m items with
probability G(y) and m — 1 items with probability 1 —G(y). Her expected utility is G(y)(2 —my) +

11



1-Gy)Al—-=(m-1)y) =G(y)(1—-y)+1—(m—1)y =1. We show that player 2 cannot get a
utility higher than 1 by using any deviating bids. Suppose now that player 2 bids y; for item ¢, for
1 <4 < m. Player 1 bids for item ¢ (according to G(x)) with probability 1/m. We also use that
since G is a CDF, for z > 1/m holds that G(z) =1 < (W{:?m. So, the expected utility of player 2
is

1 m
15 (20 ) - a1 350
i=1
J?él
1 m m
= RZ Gyl —y)+1-) v
=1 =1
J#i
1 — m — 1)y; “
< Y|SB a-w -2y
m 4 I -y :
=1 7j=1
J#i
1 m m
Sl (RN
i=1 j=1

1 m m
= mZyi—i—m—mZyj =1
i=1 j=1

Overall, we proved that B is a mixed Nash equilibrium.

It is easy to see that the optimal allocation gives all items 1:0 player 2, and has social welfare 2.
In the Nash equilibrium B, player 2 bids 0 with probability 1 ——- so, with at least this probability,
player 1 gets one item.

1 1 1 1
SW(B) < <1— W)+ —2=1+v+———
mu muv mv  m
If we set v = 1/y/m, then SW(B) < \/—m L. So, PoA> j which, for large m, converges
\/7 m
to 2. O

5 Additive valuations

For additive valuations, we show that mixed Nash equilibria are efficient, whenever they exist.
This implies an interesting separation between mixed equilibria with full information and Bayesian
equilibria, that are known not to be efficient [22]. For the sake of completeness, we present a lower
bound of 1.06 for the Bayesian PoA of single-item auctions, in Appendix B.

5.1 The PoA for single item auctions is 1

We consider a first-price single-item auction, where the valuations of the players for the item
are given by (v1,v2,...,v,). We show that the PoA in mixed strategies is 1. For any mixed

12



Nash equilibrium of strategies B = (B, Bo, ..., By), let B; denote the probability measure of the
distribution of bid b;; in particular, B;(I) = P[b; € I] for any real interval I. The corresponding
cumulative distribution function (CDF) of b; is denoted by G; (i.e., Gi(z) = B;((—00,x])). Recall
that for a given B, for every bidder i € [n], F;(b;) denotes the CDF of max;+;b;. We also use ¢;(b;)
to denote the probability that player ¢ gets the item with bid b;. Note that ¢(b;) < F;(b;), due to
a possible tie at b;. Therefore, if he bids b;, then his expected utility is
Elui(ba)] =~ E - [ua(bi)] = @i(bi) (vi — bi) < Fi(bi) (vi — ba).

Let E[u;] = Epplu;] denote his overall expected utility defined by the (Lebesgue) integral E[u;] =
f(_oopo) vi(z)(v; — x)dB;. Furthermore, assuming P[b; € I] > 0 for some interval I, let E[u;|b; €
I = Ep~B[ui|b; € I] be the expected utility of i, on condition that his bid is in . By definition

_ fI vi(x)(v; — z)dB; < fI Fi(z)(v; — z)dB;
P[b; € 1] - P[b; € I
The next lemma follows from the definition of (mixed) Nash equilibria. It states that in equi-
librium the excepted utility of any player i, conditioned on the event b; € I, must be equal to his
overall expected utility, given that he bids with positive probability in the interval I.

E[UZ’bZ S I]

Lemma 5.1. In any mized Nash equilibrium B, for every player i holds that if P[b; € I] > 0, then
Elu;|b; € I] = E[u;).

Proof. Assume that E[u;|b; € I] > E[u;]. Then, the player would be better off by submitting bids
only in the interval I (according to the distribution BJ(I') = B;(I')/B;(I) for all I' C I). If
E[u;|b; € I] < E[u;], the proof is analogous: in this case the player would be better off by bidding
outside the interval. Both cases would contradict B being a Nash equilibrium. O

In the next lemma we show that for any two players with positive utility, the infimum of their
bids must be equal, and they both bid higher than this value with probability 1. Intuitively, if a
player has non-zero utility, then his lowest possible bid cannot be lower than any player’s lowest
bid.

Lemma 5.2. Assume that in a mized Nash equilibrium B there are bidders i and j, with positive
utilities E[u;] > 0, and E[u;] > 0. Let ¢; = inf,{Gi(x) > 0} and ¢; = inf,{G;(z) > 0}. Then
¢ = q; =q, and Gi(q) = Gj(q) = 0, consequently F;(q) = Fj(q) = 0.

Proof. Assume w.l.o.g. that ¢; > ¢;. Note that, by the definition of g¢;, player j bids with positive
probability in the interval I = [g;, ¢;).

On the other hand, F;(x) = 0 over interval I, since (at least) player ¢ bids higher than = with
probability 1. This implies E[u;|b; € I| = 0. Using Lemma 5.1 we obtain E[u;] = E[u;|b; € I] =0,
contradicting our assumptions. This proves ¢; = ¢; = q.

Next we show G;(¢q) = Gj(¢q) = 0. Observe first, that because of E[u;] > 0, v; > ¢ and v; > ¢
must hold, since ¢ is the smallest possible bid of j and of i. Assume now that G;(¢q) > 0 and
Gj(q) = 0. Then, P[b; = ¢q] > 0, but E[u;|b; = ¢q] = 0, since j bids higher. This contradicts again
Lemma 5.1 for the interval [g, ¢].

Second, assume that G;(q) > 0 and G;(¢q) > 0. In case b; = b; = ¢, bidder ¢ or bidder j receives
the item with probability smaller than 1. W.l.o.g., we assume it is player <. In this case bidder ¢ is
better off by bidding ¢ + € for a small enough ¢ instead of bidding ¢, since in case of bids b; = g+ ¢,
and b; = ¢, he gets the item for sure. This contradicts B being a Nash equilibrium, and altogether
we conclude G;(q) = Gj(q) = 0.
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Finally, this immediately implies Fj(¢q) = Fj(¢q) = 0, since for both i and j, (at least) the other
one bids higher than ¢ with probability 1. O

Finally, we prove that mixed equilibria are always efficient. We use the above lemma to show
that all players who have non-zero utility, must have maximum valuation.

Theorem 5.3. In a single-item auction the PoA of mired Nash equilibria is 1.

Proof. Let v; be the maximum valuation in the single item auction with full-information. Assume
for the sake of contradiction that a mixed Nash equilibrium B has Epeg[SW (b)] < SW(OPT) = v;.
Then, there is a nonempty set of bidders J C [n]\{i}, who all get the item with positive probability
in B, moreover v, < v; holds for all £k € J. Let j € J denote the player with maximum valuation
v; < v; among players in J.

We show that E[u;] > 0, and Efu;] > 0. Let us first consider the distribution Fj(x) of the
maximum bid in b_;. If Fj(v; — ) = 0 for all 6 > 0, then the highest bid in b_;, and thus the
payment of player j is at least v; > v; whenever j wins the item. Thus for his utility E[u;] < 0,
contradicting that B is a Nash equilibrium. Therefore, there exists a small §, such that F;(v;—9) > 0.
This implies E[u;] > 0, because by bidding v; — /2 only, player i would have higher than 0 utility.

Now assume for the sake of contradiction that E[u;] = 0 (E[u;] < 0 is impossible in an equilib-
rium). Note that F(vj) > 0, otherwise j would get the item with positive probability, but always
for a price higher than v;. On the other hand, if there were a small ¢’ such that Fj(v; — 0’) > 0
then j could improve his 0 utility by bidding v; — ¢’/2 only. The latter implies, that j can get the
item (with positive probability) only with bids v; or higher, so he never bids higher so as to avoid
negative expected utility. We obtained that ¢;(v;) > 0, where ¢;(v;) denotes the probability of j
winning the item with bid v;.

Moreover, Fj(v; —¢') = 0 for all 6’ > 0 implies that the minimum bid of at least one player k
is at least v; (inf,{Gjy(x) > 0} > v;). Therefore the winning bids of player i are also at least v;
(both when ¢ = k, and when ¢ # k). But then 4 could improve his utility by overbidding the (with
positive probabilty) winning bid v; of j, that is, by bidding exactly v; + € (instead of < v; + ¢€)
with probability G;(v; + €) for a small enough e. With this bid, the additional utility of i would get
arbitrarily close to (at least) ¢;(v;)(v; — vj) > 0.

Thus, we established the existence of players i and j, with different valuations v; < v;, and
both with strictly positive expected utility in B. According to Lemma 5.2, for the infimum of these
two players’ bids ¢; = ¢; = ¢, and F;(q) = Fj(q) = 0 hold. Furthermore, ¢ < v; < v;, otherwise
the utility of j could not be positive. By the definition of ¢; = ¢, for any € > 0 it holds that

Plg < b; < q + €] > 0. Therefore, by Lemma 5.1, and by the definition of conditional expectation,
for the interval I = [g, ¢ + €) we have

_ J; Fi(z)(vi — x)dB;
Elu;] = Elulb; € I] < =L [b <7l
U q;[bi <7 —9)dB: _ Fi(g+€)(vi — ).

Rearranging terms, this yields F;(q + €) > E[u;]/(v; — ¢) > 0 for arbitrary € > 0. Since F;(x) as a
cumulative distribution function is right-continuous in every point, this positive lower bound must
hold for Fj(q) as well, contradicting F;(q) = 0. O

5.2 Upper bound for additive valuations

We extend the above proof for additive valuations.
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Theorem 5.4. For simultaneous first-price auctions with additive valuations the PoA of mized
Nash equilibria is 1.

Proof. Let B be a mixed Nash equilibrium in the m item case. We argue first that for any fixed
bidder 4, it is without loss of generality to assume that in B; his bids for each item are drawn from
independent distributions. If this were not the case, we could determine the distribution Bg of
bi(j) for any item to have the same CDF Gg as the distribution of bids for this item in B;. Then
we would replace B; by the product distribution for the items B, = ><Bg . Since both the expected
valuation and the expected payment for item j would remain the same in this new strategy, and
the valuation and utility of the player are the sum of valuations and utilities over the items, none
of these amounts would be affected. Furthermore the same additivity holds for any other player k,
whose "price function’ F} (-) for item j would also not be influenced. Thus, with B; replaced by the
strategy B, the mixed profile B’ = (B}, B_;) would remain a mixed Nash with the same expected
social welfare as B. ‘

The remaining argument is similar. Now the distribution of bids (B )ie[n) for any particular
item j corresponds to a mixed Nash equilibrium of the single item auction for this item. Otherwise
a player could improve his utility for j, and consequently the sum of his utilities for all items. In
turn, by Theorem 5.3 this implies that the social welfare for each item j is optimal, a player (or
players) with maximum valuation receive the item, which concludes the proof. ]

6 Bid-Dependent Auctions

Here we generalize some of our results to simultaneous bid-dependent auctions. Intuitively, a single
item auction is bid-dependent if the winner is always the highest bidder, and a bidder’s payment
depends only on whether she gets the item or not, and on her own bid. For instance, the first-price
auction and the all-pay auction are bid-dependent but the second-price auction is not.

For a given simultaneous bid-dependent auction, we will denote by g;’(z) and qé(x) a bidder’s
payment p;;(b) for item j when her bid for j is z, depending on whether she is the winner or a loser,
respectively. Note that we assume g;’(z) (resp. qg- (x)) to be the same for all bidders. Without
this assumption the PoA is unbounded, as we show in Appendix C. To guarantee the existence
of reasonable Nash Equilibria, we also make the following natural assumptions about q}”(m) and

(z) are non-decreasing, continuous functions of # and normalized, such that g; L(0) =

)

—q¥(x) > qé( z) for all z > 0;
(x) > 0 for some z (to avoid the case of all payments being zero, for that no Nash equilibria
)

6.1 Fractionally Subadditive valuations

6.1.1 Upper Bounds

In this section we discuss the general upper bound for simultaneous bid-dependent auctions.

We define 6 as 6 = max;ecpy, sup{x:q;u(x)#o}{qé (x)/q} (z)}.

Observe that 6 € [0, 1], due to the assumption qé. (z) < ¢f'(x). We will prove that (for 6 # 1) the
coarse-correlated and the Bayesian PoA of simultaneous bid-dependent auctions with fractionally

9Similar assumptions are also made in [3], [23] and [5].
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2
subadditive bidders is at most 62_(69;%. When we set § = 0 or § — 1, we get back the upper

bounds of e/(e — 1) for first-price auctions, and 2 for all-pay auctions, respectively.
We start by proving a lemma for a single item, analogous to Lemma 3.3.

Lemma 6.1. Consider a single item bid-dependent auction with payment functions ¢ (x) and ¢'(z).
Let B be an arbitrary randomized bidding profile, and F; denote the CDF' of the random variable
maxy; by, for this B. Then for every bidder i, and non-negative value v, there exists a pure bidding
strategy a = a(v,B_;) such that,

_ o1
Ba) (0= (@) + @) — o) + 3 pem) > TS

ke[n]
where pp(B) = EpB[pr(b)] is the expected payment from player k.
Proof. Let a = argmax, {F;(z) (v — ¢“(z) + ¢'(z)) — ¢'(z)} and A = F;(a) (v — ¢“(a) + ¢'(a)) —

¢‘'(a). In the following we use that F; is the CDF of maxy; by, and since ¢*(-) is continuous,
Elq® (maxpz; by)] = [;° (1 — Fy(x))dgq® () holds.

A+ pr(B) > A+ Ig[qw(glggc br)]

= A+ [ 1 F@)d @)
“/f(l—v-f??il
> A+/OOO(UU+_9 — 4 )>
T
> ax | <M>dy

The second inequality follows from the definition of A and a and the third one is due to the fact
that qé (z) < 0-qf(x) for any x. For the last one, ¢*(0) = 0 and we further need to show that
for zo = 00, ¢ (z0) > v — A: by definition A > F;(zo) (v — ¢*(z0) + ¢'(z0)) — ¢'(z0) = v — ¢*(20)
since F'(zp) = 1, meaning that ¢*'(z9) > v — A. For completeness we also show that v — A4 > 0, by
showing that v > A > 0: observe that A = F;(a)v — Fi(a)q*(a) — (1 — Fi(a))q'(a) < v, since F; is
a CDF; moreover A > F;(0) (v — ¢“(0) + ¢'(0)) — ¢'(0) = F;(0)v > 0.

Vv

) dq" (z)

Incase <1, A+, pr;j(B) > A+ (A+9(U_A))(IH(AJFQ((UQ__’?))Q_IH(U))_(0_1)(U_A), which is minimized
for A = Wﬁ;) The lemma follows by replacing A with this value.
In case 0 = 1, A+ Y, p;(B) > A+ A% > Ly The limit of% when 6 — 1 is

O]

N[ =

In the following, let f(-) be a maximizing additive function of set S for player i with fractionally
subadditive valuation function v;. By the definition of fractionally subadditive valuations, we have
that v;(T) > f2(T), for every T C S and f7(S) = vi(S).

Lemma 6.2. For any set S of items, and any strategy profile b, where b;j =0 for j ¢ S,

) > Z( j € X;( (fl (7) — ¢}’ (big) +q§'(biﬂ‘)) _qé‘(b"j))

JjeS

16



Proof.

ui(b) > D PXi(b) =T | £7(T) =D q¥(bij) — > di(bij)

TCS jeT JESNT

= DD PXi(b) =TI (f70() - -> > P = T1q;(bi;)
TCS jeT TCS]GS\T

=> > P =T (f7(j) -> > P = T} (bij)
jESTCS:jeT JESTCS: ggéT

= > Plie Xi(b)] () — > Plj ¢ Xi(b)ld}(bis)
Jjes jes

= 3 (Bl € XuBIUEG) — af (i) + b)) — q;-<bz-j>).
JES

O]

Lemma 6.3. Let B be a coarse correlated equilibrium of a simultaneous bid-dependent auction.
For any set of items S and any pure strategy b; of player i, where b;j =0 forjé¢s,

w(B) = E [u(b)] = 3 (Fy(tly) (F50) - af 0) + ) ) - 4h(8)y)).
jeSs

The proof of the lemma is analogous to that of Lemma 3.2: Epg[ui(b)] > Epg[u;((b;, b_;))]
holds since B is an equilibrium; then Lemma 6.2 is applied to (b}, b_;), and expectation is taken
over b ~ B.

Theorem 6.4. For bidders with fractionally subadditive valuations, the coarse correlated PoA of

~ e
any bid-dependent auction is at most 92_%1%.
Proof. Let B be a coarse correlated equilibrium, and let A(6) = %. For every player 1,

consider the maximizing additive valuation, fio ¢ for his optimal set O;. By Lemma 6.1, for every
fixed player 7 and item j there exists a bid a;; such that

Fij(aij) (fl-Oi(j) — g’ (ai;) + (é(%‘)) — ¢(aij) > A0 Zpk]

For player 4, we consider the deviation that her bid is a;; for every item in O; (and 0 for all other
items), and apply Lemma 6.3. Combined with the above inequality (for all items in O;), we obtain

0> F2G) = D oki(B) = A0 (0Y) = > > pii(B)

Jj€0; je€O; k j€O; k

By summing over all players, we get
> ui(B) = A(0) Y wi(0)) Z Z prj(B (0)SW(0) — > pr(B)
i A k

The theorem follows from SW(B) =", u;(B) + >, pi(B). O

Similarly to Lemmas 3.2 and 6.3, we can prove the following.

17



Lemma 6.5. Assume that B be is a Bayesian Nash equilibrium, and let S be an arbitrary set of
items. For player i with valuation v;, let b, be a pure strategy such that b;j =0 forj¢S. Then,

E > 37 (B OLUE0) — a 0l) + i 0) — dh(8;))

bNB(v) jeSs

Theorem 6.6. The Bayesian PoA of any bid-dependent auction, when the bidders have fractionally

(0-1)2

subadditive and independently distributed valuations, is at most g

Proof. Let \(0) = 9_39%)6 Suppose that B is a Bayesian Nash Equilibrium and the valuation
of each player ¢ is drawn according to v; ~ D;, where the D; are independently distributed. We
use the notation C = (C1,Cy,...,C),) to denote the bidding distribution in B which involves the
randomness of the valuations v, and of the bidding strategy B(v), that is b;(v;) ~ C;. Then the
utility of player 7 with valuation v; can be expressed by u;(Bi(vi), C—i) = Ey,~B,(v;),b_;~cC_, [ti(D)].
It should be noted that C_; does not depend on a particular v_; (just on the distribution D). Also
notice that the following equality holds: Ey_, [u!*(B;(v;),B_i(v_;))] = u{*(B;(v;), C_;) °.

For any player ¢ and any fractionally subadditive valuation vz € Vi, consider the following
deviation: consider some v’ ; ~ D_; and then for every j € O(v;, v';) bid a;(v;, C_;) as defined in
Lemma 6.1. By applying Lemma 6.5 for S = O;(v;, v'_;), taking expectation over v; and v, and
summing over all players, we have that

V4 O (1}17 )
>3 E [ (P i) (£ 0) = () + a}a)) = d(asy))
et J€0;(vi,v"_,)
= E (£ (aig) (£7°7) = af'(aig) + gl (aiy) ) — gh(aiy))
i | JEO: (V')
O;(v") .
=Y Bl S (Aw) 7O )~ 3 iy (Bi(wr) c_@>>
i 7€0:i(v') k
=A0)- Y B0 - 33 piy(©)
i i
The last inequality follows by Lemma 6.1.
So, Ev[SW(B(v))] = 32 Ev[ui(B)] + 32; 32 pri (C) = A(0) - Ey[SW(OY)]. O
6.1.2 Lower Bound
Here we present a lower bound of %5 for the PoA of simultaneous bid-dependent auctions with OXS

valuations and for mixed equlhbrla This implies a lower bound for submodular and fractionally
subadditive valuations, as well as for more general classes of equilibria.

YEy_, [} (B(v))] = Ep, B v;) Eb i )[Uf"’ (biyb—i)] = Ep, B, (v;) Bb_;me_; [ (bi, b-i)] = u)* (Bi(vi), C—;)
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Theorem 6.7. The PoA of simultaneous bid-dependent auctions with full information and OXS
valuations is at least -5 ~ 1.58.

Proof. The proof is very similar to the one for simultaneous first price auctions (Section 3.2).
Therefore, here we only point out the differences. The same construction applies here; the only
difference appears in the Nash strategy profile and in a scaling of the valuations.

We choose an appropriate value V', such that V' (1 — ("T_l)n_1> is in the range of q;“() for all

j (notice that due to our assumptions on q}”, there exists such a V). We consider the same set
of players and items as in Section 3.2; the valuation functions of the players are the same as in
Section 3.2, except that each valuation is multiplied by V. Also, the same tie breaking rule applies.

As for the mixed Nash equilibrium B, the dummy player still bids 0 for every item and every
real player still picks an n — 1 dimensional slice in the same random way. However the bid z;
that she bids for every item j of that slice is drawn according to a distribution with the following
item-specific CDF (we will show below that G; is a valid CDF):

V()" 4@

n

V=g (@) + d\(2)

Gj((L‘)IH( >n_1—n+17 (L‘G[O,Tj]

where T} is the bid such that q;”(TJ) =V (1 — (”7_1)7%1) Notice that we can no longer require
that the bids of a player on different items are equal, since the CDFs G; are different. Instead,
we require that for every real player the bids x; for different items in her slice are correlated
in the following way: she chooses p uniformly at random from the interval [0, 1], and then sets
;= Gj_l(p), for every j in her slice. Note that for any two items ji, jo of the slice, it holds that
Gj, (z1) = Gj,(x2) = p and x;, is not necessarily equal to z;,. However, for each item j in the
slice, the way that x; is chosen is equivalent to sampling it according to the CDF G;(z;) (but in a
correlated way to the other bids). The fact that each player’s bids are such that the CDF values
become equal, will be sufficient for proving that B is a mixed Nash equilibrium.
The probability Fj(x) that a player gets item j if she bids « for it is:

o (Gil@) =1\ V(D) @)
R = (810 - V@ + 4@

,  x€[0,Ty]

Recall that the valuation of player ¢ is additive, restricted to the slice of items that she bids for
in a particular b;. Therefore the expected utility of ¢ when he bids x in b; for item j is Fj(x)(V —

¢¥(2)) — (1 = Bi(@))d)(z) = Fi(2)(V = ¢¥(x) + ¢}(2)) — ¢i(x) = V (%2)""". By comprising all
items, E[u;(b;)] = Vot ("—_1)"71.

n

Claim 6.8. B is a Nash equilibrium.

Proof. First, we fix an arbitrary w_; € [n]*~1, and focus on the set of items C := {(¢,w_;) | ¢ € [n]},
which we call a column for player ¢. Recall that ¢ is interested in getting only one item within C,
on the other hand his valuation is additive over items from different columns. Moreover, in a fixed
b_;, every other player k submits bids x; resulting in equal values of Gj(z;) for all items in C,
because either the whole C' is in the current slice of k, and he bids correlated bids on them, or no
item from the column is in the slice and he bids 0.

Consider first a deviating bid, in which ¢ bids a positive value for more than one items in C,
say (at least) the values 1,22 > 0 for items ji, jo, respectively, and w.l.o.g. assume that G, (z1)
is maximum over items in C. We prove that if she loses item j; she should lose item jy as well: if
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she loses ji, then there must be a bidder k with bid 2} > z; for item j;. Since G, () is increasing,
this implies Gj, (¢}) > G}, (x1). However, since the bids of player k are correlated (and jo is in his
slice as well), for his bid z% on ja it holds that G;,(x5) = G;, () > Gj, (z1) > Gj,(z2). Therefore,
xl, > x9, so player ¢ cannot win item jo either, so bidding for item j, cannot contribute to the
valuation, whereas the bidder might pay for more items than j;. Consequently, bidding for only
one item in C and 0 for the rest of C' is more profitable.

Second, observe that restricted to a fixed column, submitting any bid « € [0, T}] for one arbitrary
item j results in the constant expected utility of V (”T_l)n_l, whereas by bidding higher than T;
the utility would be at most V' — ¢;’(T;) =V ("T_I)Th1 for this column. In summary, bidding for

exactly one item j from each column, an arbitrary bid = € [0,7}] is a best response for i yielding
the above expected utility, which concludes the proof that B is a Nash equilibrium. O

The rest of the argument is exactly the same as in the proof for first price auctions, with both
SW(B) and SW(O) scaled by V, that cancels out in the price of anarchy.

It remains to prove that the G;(-) are valid cumulative distribution functions for every j. To
this end it is sufficient to show that G;(7j) = 1 and that Gj(x) is non-decreasing in [0,7}]. For
simplicity we skip index j.

Ve T
G(T):n<V—qw(T)+ql(T)> -n+1=

n—1

V(=" i)

v-v(1 . (2=1)"") + g7

Now let z1,z2 € [0,7}], and 1 > x2. In order to prove G(x1) > G(x2), it is sufficient to prove that
V(”T’l)”71+ql(a:1) 1% "’1)"71+ql(x2)

n

=n —-n+1=1

V—g¥(z1)+¢' (z1) = V—g*(z2)+¢' (z2) °
V(D" g @) V()" 4 gl @)
V —q¥(z1) + ¢! (x1) V*qw(fv2)+ql($2)
@)V V()" (@) — d @)V -V ()" — ()
V —q"(x >+q<x1>><v—qw<x2>+ql<x2>>
(¢ (x1) — ¢ (2))(V = V (21)" 7" — q®(a1))
> o) T Y = o) T ) "

The last two inequalities follow from the monotonicity of ¢! and ¢*, and from the fact that
vV (1 - (%)n_1> > ¢"(z1) holds by the definition of T}. O

6.2 Subadditive valuations

We prove tight bounds for the PoA in simultaneous bid-dependent auctions with subadditive bidder
valuations. We show that the coarse-correlated and the Bayesian PoA is exactly 2. Our results hold
even for a class of auctions more general than bid-dependent auctions: we allow the payment rule
to depend on the rank of the bid, where the r** highest bid (with an arbitrary tie-breaking rule) has
rank r. We use ¢;j(z,r) to denote the payment that the bidder should pay for item j when her bid
is x and gets rank r. In particular, given a mixed bidding strategy B, bidder ¢’s expected payment
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pi(B) is equal to > . r,.1 Eb[q;(bij, 7;(b7)] where r;(b?) denotes the rank of b;; among {by;, ..., bn;}.
That is, p;;(B) = Ep[g;(bij,7i(b?)]. Note that qj (z) from the previous subsection is g;(z, 1) here,
and qé(:v) can be different for different ranks. Analogous assumptions to the ones made on ¢j’()

and qg(a:) can be made on g;j(z,r) as well. For the following upper bound we only assume that the
q;(.,7) are normalized and increasing, and ¢;(z,1) > ¢;(x,r).

6.2.1 Upper Bounds

Lemma 6.9. For any simultaneous bid-dependent auction, subadditive valuation profile v and
randomized bidding profile B, there exists a randomized bid vector A;(v,B_;) for each player i,
such that for the total expected utility and expected payments of the bidders

Zuz VB—z B_ z)Z;ZUz OV ZZPU

holds, where O} is the optimal set of player i.

Proof. Under the profile v, O} is the set of items allocated to player ¢ in the optimum. We denote
by hj(b) = argmax;b;; the bidder with the highest bid for item j, regarding the pure bidding
b. Let t;; be the maximum of bids for item j among players other than ¢, and t; be the vector
such that its j*" coordinate equals t;; it j € OF, and 0 otherwise. Note that ¢; ~ T; is an induced
random variable of B_;. We define the randomized bid A;(v,B_;) to follow the same distribution
T; (inspired by [16]).

We use the notation v;(b;, t;) and W;(b;, ;) to denote the player i’s valuation and winning set
when she bids b; and the prices are ¢;, i.e., v;(S) and W;(S) where S = {j|b;; > t;;}.

ui(Ai(V, B—z‘), B_i)

= E E (b
aLNAL b*iNBii[uz(a“ 7,)]

> E_E [vant;)] - Y, E [gj(aij; 1)) (since g;(x,1) = ¢;(x,7))

a;~T; t;~T; jeov a;~T,
i

= E E [vi(t;,a:)] — E [q;(tij,1 t; and a;
b T, aiNTi[vZ< ir ;)] Z t~~Ti[q]( ij>1)] (swap ¢; and a;)

jeoy

1

= 5,E. B [iltia) +vait)] = 3 | E [g(ti; 1)
JjeOY

1 v .

> 5’02(01 ) - Z b@B[qj(bhj(b) (j)v 1)]
jeoy

1 v .

> ivz(OZ ) - Z b@B[qj(bhj(b) (J)a 1)]

jeoy

- > E Z%’(bk(j),rk(bj)) — 5 (b, () (4)> 7y (b) (B7)

jEOV
= Z Z q] (bk,r(k,b))] = *Uz (07) Z Zpkj

Jjeoy k JjeOY k

In the second inequality v;(t;, a;) +vi(as, t;) > v;(O}) is due to the subadditivity of v;; for ¢;(ti;,1) <
j(bn,;b)(j),1) we use that g;(.,1) is non-decreasing, and the fact that ¢;; < by p)(Jj), since in
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bh;(b) (7), for computing the maximum we also consider player i. For the last inequality, notice that
>k @ (b (4), e (B7)) — @5 (bn; 0) (3)s T () (b7)) > 0, since from the sum of all payments for item j
we subtracted the payment of the winner. The lemma follows by summing over all players. O

Theorem 6.10. For bidders with subadditive valuations, the coarse correlated PoA of any bid-
dependent auction is at most 2.

Proof. Suppose B is a coarse correlated equilibrium (notice that v is fixed). By Lemma 6.9 and
the definition of coarse correlated equilibrium, we have

Z u;(B) > Z ui(Ai(v,B;),B_;) > ; Z vi(0F) = Z me

By rearranging the terms, SW(B) = >, u;(B) + 32, >, pi;(B) > 1/2- SW(O). O

Theorem 6.11. For bidders with subadditive and independent valuations, the Bayesian PoA of
any bid-dependent auction is at most 2.

Proof. Suppose B is a Bayesian Nash Equilibrium and the valuation of each player i is v; ~ D;,
where the D; are independently distributed. We use the notation C = (Cy,Cs,...,C)) to denote
the bidding distribution in B which includes the randomness of the valuations v, and of the bidding
strategy b, that is b;(v;) ~ C; (like in the proof of Theorem 6.6). Then the utility of player i with
valuation v; can be expressed by u;(B;(v;),C_;). For any player i« and any subadditive valuation
v; € Vj, consider the following deviation: sampling v’ ; ~ D_; and bidding A;((v;, v’ ;),C_;) as
defined in Lemma 6.9. By the definition of Nash equilibrlum, we have Ey_, [u]" (B;(vs), B_z(v_,-))] >
Eyr fu;"(Ai((vi, vL;), C—i), C—;)]. By taking expectation over v; and summing over all players,

ZI@[UZ( Z 'Uz, v/ )7C—i)vC—i)]

v,V

= Zu”’ (v,C_;),C_;)| (by relabeling v’ , by v_;)

> 5 : ZIVE[W(OZV)] — ZZIVE[pkj(B(V))]

where the inequality follows by Lemma 6.9. We obtained E,[SW(B(v))] = > Ey[u;(B)] +
22 225 Evlpr;(B(v))] = 1/2 - EV[SW(OY)]. O

6.2.2 Lower Bound

Theorem 6.12. For bidders with subbaditive valuations, the mired PoA of simultaneous bid-
dependent auctions is at least 2.

Proof. We consider 2 players and m items. Let v and V (with v < V) be positive reals to be
defined later. Player 1 has value v for every non-empty subset of items; player 2 values with V' any
non-empty strict subset of the items and with 2V the whole set of items. Consider now the mixed
strategy profile B, where player 1 picks item [ uniformly at random and bids z; for it and 0 for the
rest of the items, whereas, player 2 bids y; for every item j. For 1 < j < m, z; and y; are drawn
from distributions with the following CDFs G(x) and Fj(y), respectively:

(m —1)g¥ () + ¢\ (x)

N v —V/m+ q(y)
V=) +ae)

Gilo) = v =g (y) + 45 (y)

€0, Ty,  Fi(y) =

VNS [071—3]a
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where T is the bid such that ¢}’ (T;) = V/m. We choose V such that V/m is in the range of ¢}’ (-) for
all 5 (notlce that due to the assumptions on qw there always exists such a value V'). Furthermore,
in B, the y;’s are correlated in the following way: player 2 chooses p uniformly at random from the

interval [0, 1] and if p € [0, o= V/m
Note that for every two items ji, j2, it holds that Fj, (y;,) = Fj, (yJQ). In case of a tie, player 2 gets
the item. Due to the continuity of ¢;” and qé, Gj(z) and Fjj(x) are continuous and therefore none

of the CDF have a mass point in any z # 0.
We show below that B is a Nash equilibrium, and each of the F; and G; are valid cumulative

) then y; = 0, otherwise y; = I L(p), for every 1 < j < m."

distributions. The PoA can then be derived as follows. Player 2 b1ds 0 with probablhty 1 — 50,
E[SW(B) < (1- L) (V4+o)+ L2V =V + v+ 2 — Y For v = V//m, PoA > Y =
\/7 m
12#1 which, for large m, converges to 2.
T m

Claim 6.13. B is a Nash equilibrium.

Proof. If player 1 bids any z in the range of (0,7j] for a single item j and zero for the rest, her
utility is Fy(@)(v — ¢ (2)) + (1 - Fy(2))(—q}(2) = Fy(@)(v — q*(x) + ¢ () — }(z) = v — V/m.
Since G(0) = 0, her utility is also v — V/m if she bids according to G(-). Suppose player 1 bids z =
(1,...,2m), (x; € [0,T};]) with at least two positive bids. W.l.o.g., assume F(x1) = max; Fj(z;).
If y1 > x4, player 1 doesn’t get any item, since for every j, Fj(y;) = Fi(y1) > Fi(x1) > Fj(z;) and
so y; > x; (recall that in any tie player 2 gets the item). If y; < 1, player 1 gets at least the first
item and has valuation v, but she cannot pay less than ¢}’(x1). So, this strategy is dominated by
the strategy of bidding x1 for the first item and zero for the rest. Bidding x; > T} for any item
guarantees the item but results in a utility less than v — ¢ (2;) < v —¢f(Tj) = v —V/m, so it is
dominated by the strategy of bidding exactly T} for this item.

If player 2 bids (y1, ..., ym) for every item j so that y; € [0,7}], then (since player 1 bids positive
for any particular item j with probablility 1/m) her expected utility is

S [ @wev - S d ) + 0 - G - at o) - dh(5)
j=1 k=1 l’z;}

= ;Z V+Gily)(V —a () + d5(wi) = D a¥ (k) — ()

1 m m
= — D |V (m =107 () + a5 () — D aif (wk) — 05(v5)

k=1
k#j

m

1 < w w
= —|\mV+m) g () —m) g | =V

j=1 k=1

Bidding greater than T} for any item is dominated by the strategy of bidding exactly T} for this
item. Overall, B is Nash equilibrium. ]

"For each item j, the way player 2 chooses y; is equivalent to picking it according to the CDF Fj(y).
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Claim 6.14. G;(-) and Fj(-) are valid cumulative distributions.

Proof. 1t is sufficient to show that for every j, G;(T;) = Fj(T;) = 1 and Gj(x) and Fj(z) are
non-decreasing in [0, 7}]. In the following we skip index j.

(m —1)g"(T) +¢"(T) _ (m—1)Z +¢/(T)

D= V_pmdm T v Liam "
v—V/m+d(T) v—V/m+d(T)
PO = e+ @~ v Vim+q@ "
Now let x1 > xg, x1, 22 € [0,T}].
G(z1) — G(z2)
_ (m—=1)¢"(z1) + ¢'(x1)  (m—1)g"(x2) + ¢ (z2)
V —q¥(x1) + ¢ (1) V —q¥(x2) + ¢(z2)
_ Vim = 1)(¢"(z1) — ¢"(x2)) + m(q” (x1)q (z2) — ¢'(21)¢" (x2)) + V(¢ (x1) — ¢'(x2))
(V = q¥(z1) + ¢"(x1))(V = ¢“(22) + ¢'(22))
_ Vm—=1)+m- ¢ (x2))(q" (x1) — ¢“(22)) + m( q* (x2))(¢'(x1) — ¢'(x2)) >0
(V = q¥(z1) + ¢"(21))(V — ¢¥(z ) q'(x2)) B

Fj(z1) — Fj(w2)

v —V/m+ ¢ (x1) B v —V/m+ ¢ (x2)

v—q¥(z1) + ¢ (x1) v —q¥(z2) + ¢ (x2)

(v = 2)(g" (1) — ¢ (22)) + % (¢ (x1) — ¢'(22)) + ¢ (21)q (w2) — ¢! (x1)q" (w2)

(v —q¥(z1) + ¢ (21)) (v — ¢*(22) + ¢'(2))
_ (0= g+ d(@2))( (1) — ¢“(w2) + (5 — 0 (22)) (¢ (21) — ¢'(22)) -0
(v —q¥(z1) +¢'(21)) (v — g (x2)+Q(-’L‘2)) -

For both inequalities we use the monotonicity of ¢, moreover that g3’ (x) < V/m for x € [0,T}], and
v =V/y/m hold. O

O]

7 Discriminatory auctions

Discriminatory auctions are multi-unit auctions, i.e. m units of the same item are sold to n bidders.
We denote the valuation of player i for j units of the item by v;(j). The valuation v; is submodular,
if the items have decreasing marginal values, that is, v;(s + 1) — v;(s) > v(t + 1) — v;(¢) holds if
s < t. It is called subadditive, if v;(s +t) < v;(s) + v;(¢).

We assume a standard multi-unit auction in which each player submits a vector b; of m decreas-
ing bids b;(1) > b;(2) > ... > b;(m) > 0. The bidding profile of all players is then b = (b1, b, ..., by).
In the allocation £(b) = (&1,&2,...,&,), bidder i gets & units of the item, if & of his bids were

24



among the m highest bids of the players. In the case of discriminatory pricing, every bidder 7 pays
the sum of his winning bids, i.e. his &; highest bids.

In this section, we complement the results by de Keijzer et al. [12] for the case of subadditive
valuations, by providing a matching lower bound of 2 for the standard bidding format. For the case
of submodular valuations, we provide a lower bound of 1.109. We could reprove their upper bound
of e/(e — 1) for submodular bids, using our non-smooth approach. Due to the different nature of
this auction, the proof is not identical with the one for the first-price auction. Therefore, we present
the complete proof of this upper bound.

7.1 Preliminaries

The social welfare of the allocation {(b) is SW(b) = SW({(b)) = > vi(&). The players have

quasi-linear utility functions:
&i
ui(b) = vi(&) = D" bi(j)
j=1

Similarly to item bidding auctions, having a mized strategy B;, means that b; is drawn from
the set of all possible decreasing bid vectors according to the distribution B;, which we denote by
b; ~ B;. Given a valuation profile v of the players, an optimal allocation o(v) = o¥ = (0Y,...0))
is one that maximizes Y ;" ; v;(oY).

Consider a discriminatory auction with submodular valuations, with n players and m items.
Recall that v;(j) denotes the valuation of player i for j copies of the item. For any player i, we
define v;; = # It is easy to see that for submodular functions, vi; > v;(;4q) for all j € [m — 1].
Let 3j(b) be the j** lowest bid among the winning bids under the strategy profile b. Consider any
randomized bidding profile B = (By, ..., By,). For this B, ;(b) is a random variable depending on

b ~ B. We define the following functions:

Fij(z) = P[Bj(b_;) < ] for 1 <j <m,
Gij(x) = P[Bj(b—i) <z < Bjy1(b-i)] = Fij(x) — Fi(jpr)(2) for1<j<m-—1

We define separately G, () = P[Bmn(b—;) < x| = Fy,(x). Notice that Fjj(x) is the CDF of 8;(b_;);
moreover for the G;; holds that

Fij(z) = > Gilx),
k=

Y Fyle) = Y iGu@)+ > mGyle). (3)
j=1 j=1 j=m/+1

We further define F¥(z) = % 2511 Fij(x), and let 82" be a random variable with F*V(x) as

CDF. F(x) is a cumulative distribution function defined on R*, since FV(0) = 0, limy—y 4 oo (F™ (z)) =
1 and F?Y(z) is the average of non-decreasing functions, so it is itself a non-decreasing function.
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Moreover,

oY

* 1 v ande— - LS Fe)ds
[0 m = [ S R

E[5"]

i

v
0

1 &L e ]
= > [T Ry = > 5
J J

where ;(B_;) = Ey,_,~B_,[fj(b—;)]. Note that the above functions depend on some randomized
bidding profile B_; and on v. These will be clear from context when we use these functions below.

7.2 Upper bound for submodular valuations

Lemma 7.1. For any submodular valuation profile v and any randomized bidding profile B, there
exists a pure bidding strategy a;(v,B_;) for each player i, such that:

Zui(ai(v, B_;,),B_;) > (1 - i) Zvi(oy) - Zﬁj (B),
i—1 i=1 j=1
where $;(B) = Ep[3;(b)].

Proof. Recall that v;; = % U) Tet a; be the value that maximizes (viey —a;) F{" (a;). Let a;(v,B_;) =
(ajy...,a;i,0,...,0) be the selected strategy profile for player i. Observe that by the definition of
—_———— ——

24 m—oy
Gi;(), Gij(a;) is the probability of a; being the j* lowest bid among winning bids under B_;.
Therefore, if player ¢ bids according to a;(v,B_;), Gj;(a;) is the probability of player i getting
exactly j items, if j < oY, and oY items, if j > oY, under the bidding profile (a;(v,B_;),B_;).
Similarly to Lemma 3.2, we get

v

Oi m
ui(a;(v,B-;),B_;) > Z Gij(ai)(vi(j) — jai) + Z Gij(ai)(vi(of) — of a;)
= ) Gia) (v —ai) + > 0 Gijlai)(viey — as)
j=1 j=oY+1
> (vigy —ai) | Y jGijlai) + Y o} Gijla)
j=1 j=o0y+1
= (viey — @) Y Fyj(a;) = o} (viey — ;) F{™ (a;)
j=1
1 1
> (1= ) oty ot BI = (1- 2 wled) - oY B
e o e
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For the second inequality, v;; > v;,, for submodular valuations and for the following equality, we
used (3) where m’ is set to oY. For the last inequality we apply Lemma 3.3, since a; maximizes the
expression (viey — a;) F{™ (a;).

For any pure strategy profile b and any valuation profile v it holds that

S 5b) =33 50) = 33 5b).
j=1

i=1 j=1 i=1 j=1
By summing up over all players and using this inequality the lemma follows. O
Theorem 7.2. The coarse correlated PoA for the discriminatory auction is at most %, when the

players’ valuations are submodular.

Proof. Suppose B is a coarse correlated equilibrium (in this case v is fixed). By Lemma 7.1 and
the definition of coarse correlated equilibrium, we have that

Z u;(B) > Z u;i(a;(v,B_;),B_;)
i=1

=1
1 n Y m
> (1) St - X ae
i=1 j=1
After rearranging the terms SW(B) = >, ui(B) + 3_; 3;(B) > (1—1)Sw(o). O
Theorem 7.3. The BPoA of the discriminatory auction is at most -5, when the players’” valua-

tions are submodular.

Proof. Suppose B is a Bayesian Nash Equilibrium and the valuation of each player i is v; ~ D;,
where the D;’s are independent distributions. We denote by C = (C4,Cq,...,Cy) the bidding
distribution in B which includes the randomness of both the bidding strategy b and of the val-
uations v, that is b;(v;) ~ C;. Then the utility of agent i with valuation v; can be expressed by
u;(B;(v;), C_;). It should be noted that C_; depends on D_; but not on the v_;. For any agent
i and any submodular valuation v; € V;, consider the following deviation: sample v/ ; ~ D_; and
bid a;((v;,v";),C_;) as defined in Lemma 7.1. By the definition of the Bayesian Nash equilibrium,
we have

B [u;*(Bi(vi), B-i(v—-i))] =

7
Vg v

L_[Ufi(ai((vi,VLi)a C_),C.y)]
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By taking expectation over v; and summing up over all agents,

> Elui(B(v)
=1

> Z E, [ufl (ai((viv V,—i)v C*i)a C*Z)]

=1 VPV —i

:I‘[? Z u;'(a;(v,C_;),C_;) | (by relabeling v’ , by v_;)
=1
>(1-7) Lulan - L 40
=1 j=1
—(1-1) X ulon) - LBl B)
i=1 j=1
So, Ev[SW(B(v))] = 3, Ev[ui(B(v)] + 32, Ev[;(B(v))] = (1 - ¢) Ev[SW(0")]. O

7.3 Lower bounds
7.3.1 Submodular valuations
Theorem 7.4. The price of anarchy for submodular discriminatory auctions is at least 1.099.

Proof. We present an example for a discriminatory auction with submodular valuations and show
that the PoA of mixed Nash equilibria is at least 1.099.

We design a game with two players and two identical items. Player 1 has valuation (v,v),
i.e., her valuation is v if she gets one or two items; whereas player 2 has valuation (1,2), i.e., he is
additive with value 1 for each item. We use the following distribution functions defined by Hassidim
et al. [20]:

T v—1/2

G(x)zl—x’ x €[0,1/2]; F(y) = oy’ y €10,1/2].

Consider the following mixed strategy profile. Player 1 bids (z,0) and player 2 bids (y, y), where
x and y are drawn from G(x) and F'(y), respectively. Noting that player 2 bids 0 with probability
F(0) = 1 —1/2v, we need a tie-breaking rule for the case of bidding 0, in which player 2 always
gets the item. We claim that this mixed strategy profile is a Nash equilibrium.

First we prove that playing (x,0) for player 1 is a best response for every x € [0,1/2]. Notice
that (z,2’) with 2’ < x, is dominated by (z,0), since if player 1 gets at least one item, she should
pay at least x and getting both items doesn’t add to her utility.

ui(x,0) = F(z) - (v—x)=v—1/2.

Clearly, bidding higher than 1/2 guarantees the item but the payment is higher.
Now we need to show that (y,y) is a best response for player 2, for every y € [0,1/2]. Consider
any strategy (y,y') with y,y' € [0,1/2] and y > ¢/'.

uz(y,y') = Ple<y]2-y—9)+Plx>y](1-y)
= GW)2-y—y)+(1-GW)A-y) =G A -y)+1-y=1+y -y <1,
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and ug(y,y) = 1 is maximum possible. Bidding strictly higher than 1/2 for both items is not
profitable, since then her utility is 2 — 2y < 1.
Now we calculate the expected social welfare of this Nash equilibrium.

E[SW] =Py > z]2 + Pz > y|(1 + v)
=2—(1—v)Plz >y
1/2
=2—(1-vw) F(x)dG(x)
0
This expression is maximized for v = 0.643. For this value of v, E[SW] = 1.818. Since SW(0O) = 2,
we get PoA= 1.099.'? O

7.3.2 Subadditive valuations

We provide a tight lower bound of 2 for subadditive valuations in discriminatory auctions which is
similar to the lower bound of Section 4, adjusted to discriminatory auctions.

Theorem 7.5. For discriminatory auctions the price of anarchy in mized Nash equilibria is at
least 2 for bidders with subadditive valuations.

Proof. Consider two players and m items with the following valuations: player 1 is a unit-demand
player with valuation v < 1 if she gets at least one item; player 2 has valuation 1 for getting less
than m but at least one items, and 2 if she gets all the items. Inspired by [20], we use the following
distribution functions:

v—1/m

1= z € [0,1/m]; F(y):ﬁ7 y €[0,1/m).

m— 1)z

G(z) = (

Player 1 bids b1 = (z,0,...,0) and player 2 bids by = (y,...,y). « and y are drawn from G(z)
and F(y), respectively. In case of a tie, the item is always allocated to player 2.

Let B = (Bj, By) denote this mixed bidding profile. We are going to prove that B is a mixed
Nash equilibrium for every v > 1/m.

If player 1 bids any = in the range (0,1/m] for one item, she gets the item with probability
F(x), since a tie occurs with zero probability. Her expected utility is F'(z)(v —x) = v — 1/m. So,
for every x € (0,1/m] her utility is v — 1/m. If player 1 picks = according to G(x), her utility is
still v — 1/m, since she bids 0 with zero probability. Bidding something greater than 1/m results
in a utility less than v —1/m. Regarding player 1, it remains to show that her utility when bidding
for only one item is at least as high as her utility when bidding for more items. Suppose player 1
bids (z1, ..., Zm), where x; > x;41, for 1 < i < m — 1. Player 1 doesn’t get any item if and only if
y > x1. So, with probability F'(x), she gets at least one item and she pays at least x1. Therefore,
her expected utility is at most F(z1)(v —x1) = v — 1/m, but it would be strictly less if she had
nonzero payments for other items with positive probability. This means that bidding only x; for
one item and zero for the rest of them dominates the strategy (z1, ..., ).

If player 2 bids y for all items, where y € [0, 1/m], she gets m items with probability G(y) and
m—1 items with probability 1—G(y). Her expected utility is G(y)(2—my)+(1-G(y))(1—(m—1)y) =
G(y)(1—-y)+1—(m—1)y = 1. Bidding something greater than 1/m results in utility less than 1.
Suppose now that player 2 bids (y1, ..., ym), where y; > y;4q for 1 <i <m — 1. If z < y,,,, player

12This bound can be improved to 1.109 by a similar construction with 3 items. For large m the bound goes to one,
so we do not believe that this construction is tight. That is the reason why we present here the simplest version of 2
items.
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2 gets all the items; otherwise she gets m — 1 items and she pays her m — 1 highest bids. So, her
utility is

m m—1
G (ym) (2 - Zyz) + (1 - G(ym)) (1 -y y>
=1 ;
m—1

= G(ym)(l - ym) +1- Z Yi

i=1

m
= mym+1 _Zyi
i=1

m
< Mmym 1= ym=1.
=1

Overall, we proved that B is a mixed Nash equilibrium. It is easy to see that the social welfare
in the optimum allocation is 2. In this Nash equilibrium, player 2 bids 0 with probability 1 — %,
so, with at least this probability, player 1 gets one item.

1 1 1
SW(B) < <1—> (v+1)+—2=1+v+— — —
muv muv mv  m
If we set v = 1/y/m, then SW(B) < 1+ —\/% — L. So, PoA > HQ% which, for large m,
m T m
converges to 2. O
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A Mixed Nash equilibria with submodular valuations

Here, we construct a group of instances with submodular valuations, which have at least one mixed
Nash equilibrium. These instances are a generalization of the lower bound of Section 3.2. We
believe that this construction is interesting in its own right.

Consider an instance with n 4 1 players and n? items, where d divides n. We will refer to the
first n players as the real players and to the last one as the dummy player. Let [n] denote the set
of integers {1,...,n}. We define the set of items as M = [n]¢, that is, they correspond to all the
different vectors w = (w1, we, ..., wq) with w; € [n]. Intuitively, they can be thought of as the nodes
of a d dimensional grid, with coordinates in [n] in each dimension.

We divide the real players into d groups of n/d players. Let g(i) denote the group that player
i belongs to. We associate each group with one of the dimensions (directions) of the grid. In
particular, for any fixed player 4, his valuation for a subset of items S C M is the size (number of
elements) in the d — 1-dimensional projection of S in direction ¢(7), times v. Formally,

Ul(S) = ’U|{w_g(z~) |3wg(i) s.t. (wg(i),w_g(i)) S S}|

It is straightforward to check that v; has decreasing marginal valuations, and is therefore submod-
ular. The valuation of the dummy player for any subset of items S C M is (v — 1)|S5].
Given these valuations, we describe a mixed Nash equilibrium B = (B, ..., B,) having a PoA

n_q\—1
(1 — (1 — l)n+ d 1) which is arbitrarily close to ——, for large enough n. The dummy player

" 1—6717% '
bids v —1 for every item, and receives the item if all of the real players bid at most v — 1 for it. The
utility of the dummy player is always 0. For real players the mixed strategy B; is the following.
Every player i picks a number ¢ € [n] uniformly at random, and an x according to the distribution

with CDF
Ga) = (n—1) (11—1>,
(v—2a)n-T
n—1

where z € [v —1l,v— (7)7171} Subsequently, he bids = for every item w = (¢, w_g4;)), with

n
W) =L as g(i)"" coordinate, and bids v — 1 for the rest of the items. only in case of v — 1 bids for
an item, in which case the dummy player gets the item.

Let F(x) denote the probability that any bidder i gets a fixed item j, given that he bids
bi(j) = x > v — 1 for this item, and the bids in b_; are drawn from B_; (due to symmetry, this
probability is the same for all items w = (¢, w_g(i))). For every other player k, the probability that
he bids v — 1 for item j is (n — 1)/n, and the probability that j is in his selected slice but he bids
lower than x is G(z)/n. Multiplying over the n — 1 other players, we obtain

Flz) = <G(m) + n_1>n_1 — (1_7%

n n vV—x

Notice that v; is an additive valuation restricted to the slice of items that player ¢ bids for in a
particular b;. Therefore the expected utility of ¢ when he bids « in b; is F(x)(v — ) for one of these
items, and comprising all items E[u;(b;)] = n® 1 F(z)(v — x) = nd~1 (1 — 1/n)" "1,

Next we show that for v > (1 — %)_%H, B is a Nash equilibrium. In particular, the bids b; in
the support of B; maximize the expected utility of a fixed player .

First, we fix an arbitrary w_g;), and focus on the set of items C' := {(¢, w_g(;)) | £ € [n]}, which
we call a column for player i. Recall that i is interested in getting only one item within C, on the
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other hand his valuation is additive over items from different columns. Observe that restricted to

a fixed column, submitting any bid x € |v — 1,v — (”T_l)nfl} for one arbitrary item results in the

constant expected utility of (1 — %)n_l, whereas a bid higher than v — ("T_l)n_l guarantees the

item but pays more so the utility becomes strictly less than (1 — %)nil for this column.
We introduce two functions, Fi(z) and Fy(z),

o= ()= ()

Fi(x) denotes the probability that any bidder i gets a fixed item j, while the rest of the players in
g(i) bid v — 1, given that player i bids b;(j) = x for this item, and the rest bids in b_; are drawn
from B_;. Similarly, F»(x) denotes the same probability while the players of all the other groups,
apart from ¢(i), bid v — 1. Notice that F(x) = Fi(x)F3(z). In any fixed b_;, every other player of
group k # ¢(i) submits the same bid for all items in C, because either the whole C'is in the current
slice of k, and he bids the same value z, or no item from the column is in the slice and he bids
v — 1. Therefore, Fy(z) for items in C are fully dependent distributions, whereas Fy(x) for items
in C' are independent distributions.

We first show that if bidder ¢ bids more than v — 1 for at least two items in C, bidding v —1+¢
for all of these items, for a significantly small € > 0, is a better strategy. Suppose that bidder
© bids x, which is z; > v — 1 for every item j € R C C and v — 1 for the rest, where k is the
cardinality of R. Reorder the items in R in a way that the bids are in non-increasing order. We
will use mathematical induction over k. Let u;(x, k) be the utility of player ¢ for bidding x, when
the number of bids strictly greater than v — 1 is k.

E[ui(x, 2)] = F(ZL‘Q)FQ(:L‘l)(’U — X1 — 1‘2) + F(l’g)(l — Fg(l’l))(v — 1‘2)
+Fo(z1)(Fi(z1) — F(22))(v — 21)
= F(x2)(v—1x2)+ F(x1)(v —21) — F(22)F2(x1)v

_ 2(1—i>n_{—F@@ﬂ§@Qv

Elui(x,2)] is maximized when both z; and 3 are minimized, so for x; =z9 =v —1+¢. Let R_;
denote the set of all k items apart from the first one (for which bidder i bids the most). Assume that
Elui(x, k —1)] is maximized when z; = v — 1 +¢, for all j € R_;. Moreover, let P(S # ]S C R_1)
and P(S) be the probabilities that he gets at least one item from R_; and gets S, respectively. It
is easy to see that P(S # 0|S C R_1) = > scr_, P(95).
S#0D
Blui(x,k)] = Fa(z1)(Fi(z1) —P(S # 0[S € R_1))(v — z1)
+Fo (1) Y oscr_y 520 P(S) (v = X jeg @i — 21)
+(1 = Fa(21))Efui(x-1, k& — 1)]
= Fz)(v—a) - Fz(fﬁl) (S # 015 € R1)(v—m1)
+Fy(z1) Blui(x -1,k )] Fy(x1)21 3 scr 520 P(5)
+(1 = Fa(1)) Elui(x-1, k — 1)]
= (1= L Blui(x_1,k = 1)] — Fa(z1)P(S # 0[S € R_1)(v — z1)
—Fg(xl)mllF’(S 7é @‘S g R_l)
= (1= L Blui(x_1,k —1)] — Fa(z1)P(S # 0[S € R_1)v
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F5(z1) is minimized when x; = v — 1 + ¢, for a significantly small ¢ > 0, Efu;(x—1,k — 1)] is
maximized when z; = v —1+¢, for all j € R_y and P(S # @S C R_;) is minimized for the same
values. So, Efu;(x, k)] is maximized when z; =v —1+¢, for all j € R.

We next prove that for v > (1 — %)_EH, bidding > v — 1 only for one item dominates the
strategy of bidding x for more than one items.

Lemma A.1. For any integer k > 1,

Proof.

By using Lemma A.1, the utility of bidding z for k items is,

k

Elui(xz, k)] = Fi(x) Z <I;) Fy(z)" (1 — Fy(x)) " (v — rz)

— Fi(x) (_(1 (1 Fg(x))k> v k:Fg(ac)x> .

We are going to bound the value of v, so that the utility decreases as k increases. So, we would
like the following to hold.

Elu;(x, k‘—l—l)} Elui(z, k)] < 0
Fi(@) (1= (1= Fa(@))"!) v = (k + 1) Fy(w)x)

—Fl()((l— 1—F2x)k)v—k:F2 )z) < 0

(1 - Fa(@)*v— (1 - FB(2)"v — Fa(z)r < 0

Fy(z)(1 — Fo(x))fv — Fy(z)z <0

(1— Fy(z)kv — = < 0
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The quantity (1 — Fy(x))*v — z is maximized when - is minimized. Therefore,

(1—Fy(z)fv—z (1-Fw—-1)fv—v+1
(1-Fv-1))v—v+1

= 1-Fy(v—1)w.

<
<

Thus, Efu;(z,k + 1)] — Efui(z,k)] < 0, if v > Fy (v —1) = (1- %)_%H. Hence, for v >
(1- %)_%H, B is a Nash equilibrium.

It remains to calculate the expected social welfare of B, and the optimal social welfare. We
define a random variable w.r.t. the distribution B. Let Z; = v if one of the real players 1,...,n
gets item j, and Z; = v — 1 if the dummy player gets the item. The expected social welfare is

E [SW(b)] = ;E[Zj]

= n%((1 = Pr(no real player bids for j))v 4+ Pr(no real player bids for j)(v — 1))

()

Finally, we show that the optimum social welfare is n%v. An optimal allocation can be constructed
as follows: For each item (w1, ws, ..., wq) compute r = (37 ; w; mod n). Allocate this item to the
player r. Similar to the Section 3.2, each player is allocated n®~! items.

Therefore, the price of anarchy is W For v = (1 — %) *3+17 the price of anarchy becomes

(1-1) "%

n

1
(1=3) -1y

t is easy to see that the case of d = n, is the special case of Section 3.2, for which the Price of

which for large n it converges to

Anarchy is ———~, and for large n converges to —~ ~ 1.58.
YR © D

B A lower bound example for the single item Bayesian PoA.

Bayesian equilibria were known to be inefficient [22]. Here, for the sake of completeness, we present
a lower bound example for the Bayesian price of anarchy, with two players and only one item.

Theorem B.1. For single-item auctions the PoA in Bayesian Nash equilibria is at least 1.06.

Proof. In the lower-bound instance we have two bidders and only one item. The valuation of
bidder 1 is always 1. Let [ = 1 — 2/e, and r = 1 — 1/e. The valuation of bidder 2 is distributed
according to the cumulative distribution function H :

ﬁ = %7 z €0,
H = 1 = 2 x € |l,1]
e(1-2Hy 7 e(l—z)+27 '

Observe that v = 0 with probability 1/2, and ve is distributed over [[,1] otherwise. Consider
the following bidding strategy B = (B, B2) : Bj has a uniform distribution on [l,r] with CDF
G(z) = = = ex — e + 2 on [I,r]; whereas the distribution By is determined by the distribution of
V2

0, Vo = 0
ba(ve) = { u22+l’ vy € [1,1].
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Let F(z) denote the CDF of by. We can compute the distribution of by as follows. For x € [0,1),
we have F(z) = Plby < z] = 3; for @ € [I,7] we have F(z) = Plby < 2] = IP’[”T'H < z] =Plvg <
2¢ — 1] = ﬁ Finally, F(x) = 1 for x > r. In summary, by = 0 with probability 1/2, and is
distributed over [I, 7] otherwise. On the other hand, b; is uniformly distributed over [[,r]. We do
not need to bother about tie-breaking, since there are no mass points in [I,7].

We prove next, that B is a Bayesian Nash equilibrium. Consider first player 2. If vo = 0, his

utility is clearly maximized. If vy € [, 1], then Elua(b2)] = G(b2)(v2 — b2). By straightforward
calculation we obtain that over [[,r] the function G(z)(ve — z) = % is maximized in
by = (v2 +1)/2, so ba(v2) is best response for bidder 2.

Consider now player 1. Given that over [[,r] the distribution of by is F(x) = ﬁ, every bid
by € [l,r] is best response for player 1, since his utility F'(b;)(1—b1) = 1/e is constant. Now we are

ready to compute the social welfare of this Nash equilibrium.

SW(B) = PT[UQ < ” 14+ /ll(’l)g . G(bg(vg)) +1— G(bQ('UQ))) . h(vg>d?}2 < 0.942

So the PoA is at least 1.06. ]

C Anonymity assumption

Recall that we assume that ¢i’(z) (or qé. (z)) is the same for all bidders. Without the anonymity of
q}”() over buyers, we can show by the following example that the PoA is unbounded. Suppose there
is a single item to be sold to two players with valuation v; = 1 and vy = €. The losing payment
is 0 for both players but the winning payments are different such that ¢ (xz) = x for bidder 1 and
q“(xz) = e-x for bidder 2. If there is a tie, then the item is allocated to player 2. Now consider the
bidding strategy by = by = 1. It is easy to see that it forms a Nash Equilibrium and has PoA = 1/e.
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